Review Article

Acute normovolemic hemodilution

Ibrahim A. Youssef, Moatasem M. Alredy, Josef Z. Attia
and Mohamed R. Mahmoud
Department of Anesthesia and Intensive Care, El-Minia Faculty of Medicine

Adequate volume replacement during major surgeries is mandatory in order to avoid organ dysfunction and death\(^1\). The hazards related to homologous blood transfusion are well known, and might include: hypothermia, coagulation problems, hyperkalemia, hypocalcemia, allergic reactions, acute lung injury, hemolytic and non-hemolytic reactions, and transmitted infections\(^2\).

Although multiple measures are performed to increase the safety of donated blood and/or products, autologous blood remains the safest source for blood transfusion\(^3\). Autologous blood donation may be performed by either: pre-deposit autologous transfusion (The patient donates blood 3–5 weeks before surgery to be used intraoperatively), intraoperative acute normovolemic hemodilution, or intraoperative red blood cell salvage\(^4\).

Acute normovolemic (isovolemic) hemodilution (ANH) is a blood conservation technique which involves intraoperative removal and storage (at room temperature) of blood from a patient, just before or shortly after the induction of anesthesia, with simultaneous adding of a replacement volume of crystalloid and/or colloid\(^5\). This blood is transfused again to the same patient when intraoperative blood loss is controlled, or when necessary\(^6\).

ANH is indicated when blood loss is expected to be more than 1 or expected to exceed 20% of the patients’ blood volume\(^7\).

The American Association of Blood Banks guidelines recommend that intraoperative or postoperative autotransfusion should be performed in surgeries where a large amount of bleeding (more than 20% total volume) is anticipated\(^8\).

In summary, compared with allogeneic blood transfusion, ABT has irreplaceable advantages such as avoiding allergies, immunosuppression, hemocytolysis and other adverse reactions. It is a safe, effective and affordable method of blood transfusion\(^9\).

References


